

MINDLAB

IBDP Mathematics AA Revision Notes

Topic 5.8: Optimization — Maximum and Minimum Problems

Syllabus Reference

SL 5.8 – Testing for maximum or minimum. Optimization problems.

Learning Objectives

Upon completion of this section, students should be able to:

- Set up optimization problems from word descriptions
- Express quantities to be optimized as functions of one variable
- Use constraints to eliminate variables
- Apply calculus to find maximum and minimum values
- Verify solutions and interpret results in context

1 Introduction to Optimization

Optimization

Optimization is the process of finding the maximum or minimum value of a quantity subject to given constraints.

Common applications include:

- Maximizing profit, area, volume, efficiency
- Minimizing cost, material usage, distance, time

Types of Extrema

- **Local (relative) maximum/minimum:** Largest/smallest value in a neighborhood
- **Global (absolute) maximum/minimum:** Largest/smallest value over the entire domain

For optimization problems, we usually want the **global** extremum within the given constraints.

2 General Method for Optimization

Steps for Solving Optimization Problems

Step 1: Understand the problem

- Read carefully and identify what needs to be maximized/minimized
- Draw a diagram if applicable
- Define variables clearly

Step 2: Write the objective function

- Express the quantity to optimize as a function
- Initially, this may involve multiple variables

Step 3: Use constraints

- Identify any relationships or restrictions given
- Use these to express the objective function in terms of ONE variable

Step 4: Find critical points

- Differentiate the objective function
- Solve $\frac{dy}{dx} = 0$ (or $\frac{dA}{dx} = 0$, etc.)

Step 5: Verify it's a maximum or minimum

- Use second derivative test: $f''(x) < 0$ (max), $f''(x) > 0$ (min)
- OR check endpoints if domain is restricted
- OR use first derivative sign change

Step 6: Answer the question

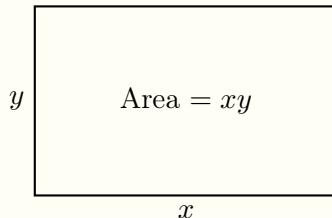
- Calculate the required values
- Give answer in context with appropriate units

3 Optimization with Geometric Constraints

Maximizing Area with Fixed Perimeter

A farmer has 100 meters of fencing to enclose a rectangular field. Find the dimensions that maximize the enclosed area.

Solution:



Step 1: Define variables

Let x = length, y = width of the rectangle.

Step 2: Objective function

We want to maximize: $A = xy$

Step 3: Constraint

Perimeter: $2x + 2y = 100$

Solve for y : $y = 50 - x$

Substitute into area: $A = x(50 - x) = 50x - x^2$

Step 4: Differentiate and find critical points

$$\frac{dA}{dx} = 50 - 2x = 0$$

$$x = 25$$

Step 5: Verify maximum

$$\frac{d^2A}{dx^2} = -2 < 0 \implies \text{Maximum}$$

Step 6: Find dimensions

$x = 25$ m, $y = 50 - 25 = 25$ m

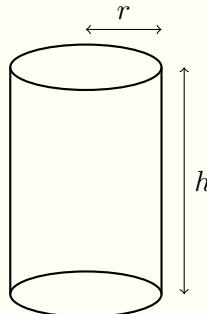
Maximum area = $25 \times 25 = 625$ m²

Answer: The field should be a square with side 25 m for maximum area of 625 m².

Minimizing Surface Area

A closed cylindrical can must have a volume of 500 cm³. Find the dimensions that minimize the surface area.

Solution:



Step 1: Define variables

Let r = radius, h = height

Step 2: Objective function

Surface area: $S = 2\pi r^2 + 2\pi r h$ (two circles + curved surface)

Step 3: Constraint

Volume: $V = \pi r^2 h = 500$

Solve for h : $h = \frac{500}{\pi r^2}$

Substitute:

$$S = 2\pi r^2 + 2\pi r \cdot \frac{500}{\pi r^2} = 2\pi r^2 + \frac{1000}{r}$$

Step 4: Differentiate

$$\frac{dS}{dr} = 4\pi r - \frac{1000}{r^2}$$

Set equal to zero:

$$4\pi r = \frac{1000}{r^2}$$

$$4\pi r^3 = 1000$$

$$r^3 = \frac{250}{\pi}$$

$$r = \sqrt[3]{\frac{250}{\pi}} \approx 4.30 \text{ cm}$$

Step 5: Verify minimum

$$\frac{d^2S}{dr^2} = 4\pi + \frac{2000}{r^3}$$

Since $r > 0$, we have $\frac{d^2S}{dr^2} > 0$, confirming a minimum.

Step 6: Find height

$$h = \frac{500}{\pi r^2} = \frac{500}{\pi \cdot (250/\pi)^{2/3}} = \frac{500}{\pi^{1/3} \cdot 250^{2/3}}$$

After simplification: $h = 2r = 2\sqrt[3]{\frac{250}{\pi}} \approx 8.60 \text{ cm}$

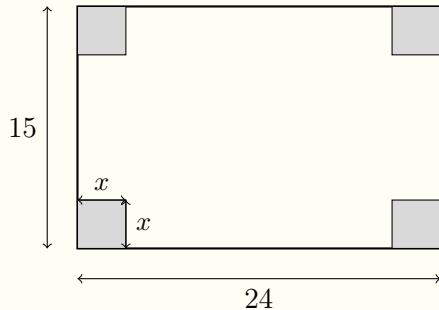
Answer: Radius $\approx 4.30 \text{ cm}$, Height $\approx 8.60 \text{ cm}$

Note: The optimal cylinder has $h = 2r$ (height equals diameter).

Box with Maximum Volume

A rectangular sheet of cardboard measuring 24 cm by 15 cm has squares of side x cut from each corner. The sides are then folded up to form an open box. Find the value of x that maximizes the volume.

Solution:



Step 1: Express dimensions of box

After folding:

- Length: $24 - 2x$
- Width: $15 - 2x$
- Height: x

Step 2: Volume function

$$V = x(24 - 2x)(15 - 2x)$$

Expand:

$$V = x(360 - 48x - 30x + 4x^2) = x(4x^2 - 78x + 360)$$

$$V = 4x^3 - 78x^2 + 360x$$

Step 3: Constraints

For valid box: $x > 0$, $24 - 2x > 0$, $15 - 2x > 0$

So: $0 < x < 7.5$

Step 4: Differentiate

$$\frac{dV}{dx} = 12x^2 - 156x + 360 = 12(x^2 - 13x + 30)$$

Set equal to zero:

$$x^2 - 13x + 30 = 0$$

$$(x - 3)(x - 10) = 0$$

$$x = 3 \text{ or } x = 10$$

Since $0 < x < 7.5$, we have $x = 3$ cm.

Step 5: Verify maximum

$$\frac{d^2V}{dx^2} = 24x - 156$$

At $x = 3$: $\frac{d^2V}{dx^2} = 72 - 156 = -84 < 0 \implies$ Maximum

Step 6: Calculate maximum volume

$$V = 3(24 - 6)(15 - 6) = 3 \times 18 \times 9 = 486 \text{ cm}^3$$

Answer: $x = 3$ cm gives maximum volume of 486 cm^3 .

4 Optimization in Economics

Profit Maximization

A company's profit function is $P(x) = -2x^2 + 120x - 800$ dollars, where x is the number of units sold. Find the number of units that maximizes profit and the maximum profit.

Solution:

Step 1: The objective function is already given: $P(x) = -2x^2 + 120x - 800$

Step 2: Differentiate

$$\frac{dP}{dx} = -4x + 120$$

Step 3: Find critical point

$$-4x + 120 = 0 \implies x = 30$$

Step 4: Verify maximum

$$\frac{d^2P}{dx^2} = -4 < 0 \implies \text{Maximum}$$

Step 5: Calculate maximum profit

$$P(30) = -2(900) + 120(30) - 800 = -1800 + 3600 - 800 = 1000$$

Answer: Sell 30 units for maximum profit of \$1000.

Minimizing Cost

The cost of running a car at speed v km/h is $C = \frac{v^2}{100} + \frac{900}{v}$ dollars per hour. Find the speed that minimizes cost.

Solution:

Step 1: Differentiate

$$\frac{dC}{dv} = \frac{2v}{100} - \frac{900}{v^2} = \frac{v}{50} - \frac{900}{v^2}$$

Step 2: Set equal to zero

$$\frac{v}{50} = \frac{900}{v^2}$$

$$v^3 = 45000$$

$$v = \sqrt[3]{45000} \approx 35.6 \text{ km/h}$$

Step 3: Verify minimum

$$\frac{d^2C}{dv^2} = \frac{1}{50} + \frac{1800}{v^3}$$

For $v > 0$: $\frac{d^2C}{dv^2} > 0 \implies \text{Minimum}$

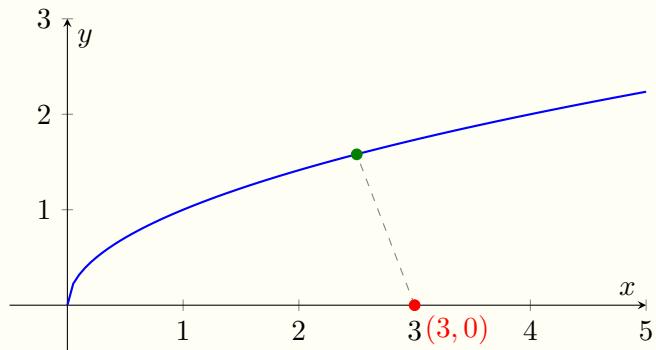
Answer: Optimal speed is approximately 35.6 km/h.

5 Distance Problems

Minimum Distance to a Curve

Find the point on the curve $y = \sqrt{x}$ that is closest to the point $(3, 0)$.

Solution:



Let the point on the curve be (x, \sqrt{x}) .

Distance formula:

$$D = \sqrt{(x - 3)^2 + (\sqrt{x} - 0)^2}$$

Tip: Minimize D^2 instead (same result, easier calculus):

$$D^2 = (x - 3)^2 + x = x^2 - 6x + 9 + x = x^2 - 5x + 9$$

Let $S = D^2$. Then:

$$\frac{dS}{dx} = 2x - 5 = 0 \implies x = 2.5$$

Verify: $\frac{d^2S}{dx^2} = 2 > 0 \implies$ Minimum

Find the point: $y = \sqrt{2.5} = \frac{\sqrt{10}}{2}$

Answer: The closest point is $\left(\frac{5}{2}, \frac{\sqrt{10}}{2}\right)$ or $(2.5, 1.58)$.

6 GDC Techniques for Optimization

Using GDC for Optimization

Method 1: Graph and find maximum/minimum

1. Enter the objective function in $Y1$
2. Graph with appropriate window
3. Use $2nd \rightarrow CALC \rightarrow \text{maximum}$ or minimum
4. Set left bound, right bound, and guess

Method 2: Solve derivative = 0

1. Enter $f(x)$ in $Y1$
2. Enter $f'(x)$ in $Y2$ (use $nDeriv$ or calculate manually)
3. Find zeros of $Y2$ using $2nd \rightarrow CALC \rightarrow \text{zero}$

Method 3: Table analysis

1. Set up TABLE with appropriate ΔTbl
2. Scroll to find where function reaches extreme value

Common Mistakes in Optimization

1. Not checking if critical point is max or min:

Always verify using second derivative test or boundary analysis.

2. Forgetting to check domain boundaries:

The optimal value might occur at an endpoint, not a critical point.

3. Wrong variable elimination:

Be careful when using constraints to eliminate variables.

4. Not answering the actual question:

If asked for “dimensions,” give all dimensions, not just the variable x .

5. Missing units:

Always include appropriate units in your final answer.

6. Setting up wrong objective function:

Read carefully: maximize AREA vs maximize PERIMETER are different!

IB Exam Advice

- Draw a clear diagram and label all variables
- Write the constraint equation and objective function explicitly
- Show all differentiation steps
- Verify your answer makes sense in context (e.g., dimensions can't be negative)
- State clearly whether you've found a maximum or minimum and why
- On calculator papers, you can use GDC to verify, but show the calculus method
- Check your answer by substituting back into original expressions

7 Topic Links

- **Topic 5.6:** Differentiation rules needed for finding derivatives
- **Topic 5.7:** Second derivative test for classifying extrema
- **Topic 5.2:** Understanding increasing/decreasing functions
- **Topic 3:** Geometry formulas for area, volume, surface area
- **Topic 5.14 (AHL):** Related rates — dynamic optimization

8 Practice Problems

1. A rectangular enclosure is to be made using 200 m of fencing. One side is against a wall (no fence needed). Find the dimensions that maximize the area.
2. Find two positive numbers whose sum is 50 and whose product is maximum.
3. An open-top box is made from a square piece of cardboard (side 30 cm) by cutting equal squares from corners and folding up. Find the side of the cut square that maximizes volume.
4. A cylindrical can (open top) must hold 1000 cm³. Find the radius that minimizes surface area.
5. The profit from selling x items is $P(x) = 250x - x^2 - 5000$. Find the number of items to maximize profit.
6. Find the point on the line $y = 2x + 1$ closest to the origin.

Answers:

1. 50 m \times 100 m (100 m side against wall); Area = 5000 m²
2. Both numbers are 25; Product = 625
3. 5 cm; Maximum volume = 2000 cm³
4. $r = \sqrt[3]{\frac{500}{\pi}} \approx 5.42$ cm

5. 125 items; Maximum profit = \$10,625

6. $(-\frac{2}{5}, \frac{1}{5})$

MINDLAB