

IB Diploma Programme Chemistry

Reactivity 3: What are the Mechanisms of Chemical Change?

Subtopic R3.2

R3.2 - Electron Transfer Reactions (Redox and Electrochemistry)

Comprehensive Revision Notes

Both SL and AHL Content

MINDLAB

Contents

1 R3.2 - Electron Transfer Reactions (Redox and Electrochemistry)	2
1.1 Overview	2
1.2 Core Definitions	2
1.3 Oxidation States (SL)	2
1.4 Half-Equations (SL)	2
1.5 Voltaic (Galvanic) Cells (SL)	3
1.6 Electrolytic Cells (SL)	4
1.7 Organic Redox Reactions (SL)	4
1.8 AHL - Standard Electrode Potentials	5
1.9 AHL - Standard Cell Potential	5
1.10 AHL - Gibbs Energy and Electrochemistry	6
1.11 AHL - Electrolysis of Aqueous Solutions	6
1.12 AHL - Electroplating	7
1.13 Topic Linkages	7
2 Diagram Practice	9

1 R3.2 - Electron Transfer Reactions (Redox and Electrochemistry)

1.1 Overview

Guiding Question: *What happens when electrons are transferred?*

Teaching Hours: SL: 10 hours — HL: 15 hours (10 SL + 5 HL)

1.2 Core Definitions

SL Core Content

Oxidation and Reduction (OIL RIG):

- **Oxidation:** Loss of electrons, increase in oxidation state
- **Reduction:** Gain of electrons, decrease in oxidation state
- **Oxidizing agent:** Causes oxidation (itself gets reduced)
- **Reducing agent:** Causes reduction (itself gets oxidized)

Mnemonic: OIL RIG (Oxidation Is Loss, Reduction Is Gain)

1.3 Oxidation States (SL)

Rules for Assigning Oxidation States:

1. Elements in pure form: 0 (e.g., O₂, Fe)
2. Monatomic ions: charge on ion (e.g., Na⁺ = +1, Cl⁻ = -1)
3. Oxygen: usually -2 (except peroxides -1, OF₂ +2)
4. Hydrogen: usually +1 (except metal hydrides -1)
5. Fluorine: always -1
6. Group 1 metals: always +1
7. Group 2 metals: always +2
8. Sum of oxidation states = overall charge

Example: Determine oxidation state of S in H₂SO₄.

Solution: Let S = x

$$2(+1) + x + 4(-2) = 0$$

$$2 + x - 8 = 0$$

$$x = +6$$

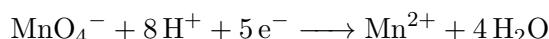
1.4 Half-Equations (SL)

Balancing Half-Equations in Acidic/Neutral Solution:

1. Balance atoms other than O and H
2. Balance O by adding H₂O
3. Balance H by adding H⁺
4. Balance charge by adding e⁻

Example: $\text{MnO}_4^- \longrightarrow \text{Mn}^{2+}$ (acidic)

Step 1: Mn already balanced


Step 2: Balance O with H_2O

Step 3: Balance H with H^+

Step 4: Balance charge with e^-

1.5 Voltaic (Galvanic) Cells (SL)

SL Core Content

Components:

- **Anode:** Oxidation occurs, negative terminal (-), electron source
- **Cathode:** Reduction occurs, positive terminal (+), electron sink
- **Salt bridge:** Allows ion flow to maintain neutrality (NOT electron flow!)
- **External circuit:** Wire connecting electrodes (electrons flow anode \rightarrow cathode)

Mnemonic: “An Ox” (Anode = Oxidation), “Red Cat” (Reduction = Cathode)

Example - Zn/Cu Cell:

- Anode: $\text{Zn} (\text{s}) \longrightarrow \text{Zn}^{2+} (\text{aq}) + 2 e^-$ (oxidation)
- Cathode: $\text{Cu}^{2+} (\text{aq}) + 2 e^- \longrightarrow \text{Cu} (\text{s})$ (reduction)
- Overall: $\text{Zn} (\text{s}) + \text{Cu}^{2+} (\text{aq}) \longrightarrow \text{Zn}^{2+} (\text{aq}) + \text{Cu} (\text{s})$

Common Pitfall

Common Error: Electrons do NOT flow through salt bridge!

- Electrons: Flow through external wire only (anode \rightarrow cathode)
- Ions: Flow through salt bridge (anions toward anode, cations toward cathode)

1.6 Electrolytic Cells (SL)

SL Core Content

Key Differences from Voltaic Cells:

- Requires external DC power source
- Drives non-spontaneous reactions
- **Anode:** Oxidation, POSITIVE terminal (connected to + of battery)
- **Cathode:** Reduction, NEGATIVE terminal (connected to - of battery)
- Polarity REVERSED compared to voltaic cell!

Electrolysis of Molten NaCl:

- Cathode: $\text{Na}^+ + \text{e}^- \longrightarrow \text{Na}$ (reduction)
- Anode: $2\text{Cl}^- \longrightarrow \text{Cl}_2 + 2\text{e}^-$ (oxidation)
- Overall: $2\text{NaCl}(\text{l}) \longrightarrow 2\text{Na}(\text{l}) + \text{Cl}_2(\text{g})$

1.7 Organic Redox Reactions (SL)

SL Core Content

Oxidation of Alcohols:

- **Primary (1°):** $\text{RCH}_2\text{OH} \xrightarrow{\text{oxidize}} \text{RCHO} \xrightarrow{\text{oxidize}} \text{RCOOH}$
 - Use distillation to collect aldehyde (prevents further oxidation)
 - Use reflux to form carboxylic acid (prolonged heating)
- **Secondary (2°):** $\text{R}_2\text{CHOH} \xrightarrow{\text{oxidize}} \text{R}_2\text{CO}$ (ketone, stops here)
- **Tertiary (3°):** No oxidation under normal conditions

Reduction of Carbonyl Compounds:

- $\text{RCHO} \xrightarrow{\text{reduce}} \text{RCH}_2\text{OH}$ (aldehyde \rightarrow primary alcohol)
- $\text{R}_2\text{CO} \xrightarrow{\text{reduce}} \text{R}_2\text{CHOH}$ (ketone \rightarrow secondary alcohol)
- $\text{RCOOH} \xrightarrow{\text{reduce}} \text{RCHO} \xrightarrow{\text{reduce}} \text{RCH}_2\text{OH}$ (acid \rightarrow aldehyde \rightarrow alcohol)

Reduction of Alkenes/Alkynes:

- $\text{C}=\text{C} + \text{H}_2 \longrightarrow \text{C}=\text{C}$ (alkene \rightarrow alkane)
- $\text{C}\equiv\text{C} + \text{H}_2 \longrightarrow \text{C}=\text{C} + 2\text{H}_2 \longrightarrow \text{C}=\text{C}$ (alkyne \rightarrow alkene \rightarrow alkane)

1.8 AHL - Standard Electrode Potentials

AHL Additional Content

Standard Electrode Potential (E^\ominus):

- Voltage of half-cell relative to standard hydrogen electrode (SHE)
- Standard conditions: 298 K, 1 bar, 1 mol dm⁻³
- All data booklet values written as REDUCTION potentials
- More positive E^\ominus = stronger oxidizing agent (easier to reduce)
- More negative E^\ominus = stronger reducing agent (easier to oxidize)

Standard Hydrogen Electrode (SHE):

1.9 AHL - Standard Cell Potential

AHL Additional Content

Key Formula

Standard Cell Potential:

$$E_{\text{cell}}^\ominus = E_{\text{cathode}}^\ominus - E_{\text{anode}}^\ominus \quad (2)$$

Spontaneity Criterion:

- If $E_{\text{cell}}^\ominus > 0$: Spontaneous (forward reaction favored)
- If $E_{\text{cell}}^\ominus < 0$: Non-spontaneous (reverse reaction favored)
- If $E_{\text{cell}}^\ominus = 0$: At equilibrium

Example (HL): Calculate E_{cell}^\ominus for $\text{Zn} (\text{s}) + \text{Cu}^{2+} (\text{aq}) \longrightarrow \text{Zn}^{2+} (\text{aq}) + \text{Cu} (\text{s})$

Given: $E^\ominus(\text{Cu}^{2+}/\text{Cu}) = +0.34 \text{ V}$, $E^\ominus(\text{Zn}^{2+}/\text{Zn}) = -0.76 \text{ V}$

Solution:

- More positive E^\ominus = cathode: $\text{Cu}^{2+}/\text{Cu} = +0.34 \text{ V}$
- More negative E^\ominus = anode: $\text{Zn}^{2+}/\text{Zn} = -0.76 \text{ V}$

$$\begin{aligned} E_{\text{cell}}^\ominus &= E_{\text{cathode}}^\ominus - E_{\text{anode}}^\ominus \\ &= (+0.34) - (-0.76) \\ &= +1.10 \text{ V} \end{aligned}$$

Since $E_{\text{cell}}^\ominus > 0$, reaction is spontaneous.

1.10 AHL - Gibbs Energy and Electrochemistry

AHL Additional Content

Key Formula

Relationship Between ΔG^\ominus and E_{cell}^\ominus :

$$\Delta G^\ominus = -nFE_{\text{cell}}^\ominus \quad (3)$$

Where:

- n = moles of electrons transferred
- F = Faraday constant = 96,500 C mol⁻¹
- E_{cell}^\ominus in volts (V)
- ΔG^\ominus in joules (J) [convert to kJ: divide by 1000]

Example (HL): Calculate ΔG^\ominus for the Zn/Cu cell ($E_{\text{cell}}^\ominus = +1.10$ V, $n = 2$).

Solution:

$$\begin{aligned} \Delta G^\ominus &= -nFE_{\text{cell}}^\ominus \\ &= -2 \times 96500 \times 1.10 \\ &= -212300 \text{ J} \\ &= -212 \text{ kJ mol}^{-1} \end{aligned}$$

Negative ΔG^\ominus confirms spontaneous reaction.

1.11 AHL - Electrolysis of Aqueous Solutions

AHL Additional Content

Competing Reactions:

At cathode (reduction):

- Metal ion reduction: $\text{M}^{n+} + ne^- \longrightarrow \text{M}$
- Water reduction: $2\text{H}_2\text{O} + 2e^- \longrightarrow \text{H}_2 + 2\text{OH}^-$ ($E^\ominus = -0.83$ V)

At anode (oxidation):

- Halide oxidation: $2\text{X}^- \longrightarrow \text{X}_2 + 2e^-$
- Water oxidation: $2\text{H}_2\text{O} \longrightarrow \text{O}_2 + 4\text{H}^+ + 4e^-$ ($E^\ominus = +1.23$ V)

Prediction: Species with more positive E^\ominus is preferentially reduced (cathode); species with more negative E^\ominus is preferentially oxidized (anode)

Example - Electrolysis of $\text{CuSO}_4\text{(aq)}$:

- Cathode: $\text{Cu}^{2+} + 2e^- \longrightarrow \text{Cu}$ ($E^\ominus = +0.34$ V) preferred over water reduction
- Anode: $2\text{H}_2\text{O} \longrightarrow \text{O}_2 + 4\text{H}^+ + 4e^-$ (SO_4^{2-} cannot be oxidized)

1.12 AHL - Electroplating

AHL Additional Content

Electroplating Setup:

- Object to be plated = cathode (reduction deposits metal)
- Metal source = anode (oxidation supplies metal ions)
- Electrolyte contains metal ions

Example - Copper Plating:

- Cathode (object): $\text{Cu}^{2+} + 2\text{e}^- \longrightarrow \text{Cu}$ (metal deposited)
- Anode (Cu electrode): $\text{Cu} \longrightarrow \text{Cu}^{2+} + 2\text{e}^-$ (replenishes Cu^{2+})
- Electrolyte: $\text{CuSO}_4\text{(aq)}$

1.13 Topic Linkages

- **R1.4 (Gibbs Energy):** $\Delta G^\ominus = -nFE_{\text{cell}}^\ominus$ connects electrochemistry to thermodynamics (HL)
- **S3.1 (Periodic Trends):** Reactivity series follows ionization energy trends
- **R2.3 (Equilibrium):** Secondary cells involve reversible reactions

Key Points to Remember

Key Tips

- Activity series follows periodic trends:: Group 1 and 2 metals: Very reactive (lose electrons easily)
- Transformed Structure:: $\text{CH}_2\text{OH} \rightarrow \text{CHO} \rightarrow \text{COOH}$, carbon oxidation state -1 \rightarrow +1 \rightarrow +3
- Sum of oxidation states = overall charge: Core principle for all calculations

2 Diagram Practice

Use these spaces to practice drawing essential diagrams for this topic.

▷ Draw: Oxidation state determination flowchart

▷ Draw: Half-equation balancing steps

▷ Draw: Oxidation and reduction memory aid (OIL RIG)

▷ Draw: Electron transfer in a redox reaction